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Abstract 

Inclusion body myositis (IBM) is the most prevalent idiopathic inflammatory myopathy (IIM) affecting older adults. The 
pathogenic hallmark of IBM is chronic inflammation of skeletal muscle. At present, we do not classify IBM into differ-
ent sub-entities, with the exception perhaps being the presence or absence of the anti-cN-1A-antibody. In contrast 
to other IIM, IBM is characterized by a chronic and progressive disease course. Here, we discuss the pathophysiologi-
cal framework of IBM and highlight the seemingly prototypical situations where IBM occurs in the context of other 
diseases. In this context, understanding common immune pathways might provide insight into the pathogenesis of 
IBM. Indeed, IBM is associated with a distinct set of conditions, such as human immunodeficiency virus (HIV) or hepa-
titis C—two conditions associated with premature immune cell exhaustion. Further, the pathomorphology of IBM is 
reminiscent of other muscle diseases, notably HIV-associated myositis or granulomatous myositis. Distinct immune 
pathways are likely to drive these commonalities and senescence of the CD8+ T cell compartment is discussed as a 
possible mechanism of pathogenesis. Future effort directed at understanding the co-occurrence of IBM and associ-
ated diseases could prove valuable to better understand the enigmatic IBM pathophysiology.
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Inclusion body myositis—current concepts
At present, IBM is classified among the idiopathic 
inflammatory myopathies (IIM), which includes dermat-
omyositis (DM), immune-mediated necrotizing myopa-
thy (IMNM), myositis in antisynthetase syndrome, and 
a group of non-specific IIM [51]. However, these enti-
ties are unlikely to comprise all types of IIM that occur. 
Among IIM, IBM is unique as it does not occur in chil-
dren, has a relatively ‘pure’ muscle phenotype, and shows 
only subtle therapeutic response to contemporary treat-
ments, if at all, making IBM difficult to contextualize 

immunologically [25]. The presumed presence of degen-
erative features, such as rimmed vacuoles and protein 
aggregations, has provoked a longstanding debate regard-
ing the pathophysiology of IBM. The early description of 
cytotoxic CD8+ T cell infiltrates in the endomysium by 
the late Kichii Arahata were consolidated by further stud-
ies of the clonal expansion of CD8+ T cells and their T 
cell receptor (TCR) repertoire in IBM [2, 25]. This line 
of argumentation has very recently been fostered by the 
identification of effector memory T cells re-expressing 
CD45RA (TEMRA) and CD8+ T cells with an exhausted 
phenotype as evidenced by expression of CD57 and 
KLRG1, among others [26, 27].

Conversely, in-depth analysis of rimmed vacuoles and 
their content identified a number of proteins, none of 
which are exclusive to IBM [29]. Nonetheless, there is uni-
form agreement that the presence of rimmed vacuoles, as 
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they occur in IBM, and their specific morphological fea-
tures inform about defective macroautophagic pathways 
[6, 8, 52]. Recent advances in whole genome sequencing 
covered mitochondrial DNA (mtDNA) to a mean depth 
of 46,000 × in skeletal muscle specimens obtained from 
21 IBM patients [31]. Here, mtDNA deletions and dupli-
cation were identified both in IBM and aged controls 
but were more pronounced in IBM. Indeed, the level of 
heteroplasmy in IBM was 10% (range 1% to 35%) com-
pared to 1% in controls (range 0.2% to 3%). The similar-
ity to patterns observed in mtDNA polymerase gamma A 
catalytic subunit (Pol□A)-associated (POLG-associated) 
disease allows the hypothesis that there is a defective 
mtDNA replication machinery in IBM muscle result-
ing in accelerated aging driven by chronic inflammation. 
Mitophagy is a specific autophagy program eliminating 
dysfunctional mitochondria, thereby contributing to cel-
lular homeostasis [13]. However, altered protein levels 
of receptors necessary for effective mitophagy were pre-
viously described in IBM [59]. Indeed, Nogalska et  al. 
observed that the function and expression of Bnip3, a 
key receptor for effecting mitophagy, is preserved—and 
perhaps increased—in sporadic IBM. The authors sug-
gest that impaired lysosomal function and mitochondrial 
enlargement contribute to ineffective mitophagy, con-
tributing to the accumulation of damaged mitochondria 
seen in IBM [31, 59].

The prototypical pathomorphology of IBM comprises 
four major categories that were first explored in 1978 by 
a brilliant description from the late Stirling Carpenter 
[12] and were now complemented by modern molecular 
analysis (Fig. 1):

1.	 Highly specific inflammatory features consisting of 
endomysial T cell infiltrates showing a predomi-
nance of CD8+ lymphocytes. These lymphocytes 
exhibit a characteristic pattern of terminal differen-
tiation being positive for the markers KLRG1 and 
CD57 and losing CD28 expression [27, 40]. They are 
accompanied by highly differentiated Siglec 1+ mac-
rophages co-staining with STAT6 or STAT1 in active 
myophagocytosis. Further, interferon-signature 
proteins such as IRF8 and ISG15 are co-expressed 
on major histocompatibility complex (MHC) class 
II-positive macrophages in the endomysium as 
evidenced by proteomic and immunohistochemi-
cal analysis [64]. In this context, the sarcolemma of 
most myofibers are MHC class I and II positive, while 
complement depositions are likely unspecific [4].

2.	 Rimmed vacuoles and a range of misfolded proteins 
either associated with the vacuoles or lying beneath 
the myofibrils. Vacuoles may be scarce, but more 
often, they are identified on consecutive levels of 

the muscle specimens. They are most easily iden-
tified with p62 or LC3 [8]. The pentameric form 
of formyl thiophene acetic acid (pFTAA) stains as 
coarse plaque-like deposits and highlights defective 
(macro)-autophagy [39, 52]. Of note, amyloidogenic 
deposits (misfolded proteins with a β-pleated struc-
ture) must not be mistaken for amyloid-β, which is 
processed by secretases and shed to the extracellular 
(not intracellular) space.

3.	 Mitochondrial damage with ragged-red, -blue or 
-brown fibers as well as cytochrome c oxidase 
(COX)-negative (and SDH-positive) fibers. Further, 
unambiguous ultrastructural signs of abnormal mito-
chondrial fine structure (e.g. paracristalline inclu-
sions or circular cristae) constitute a hallmark of IBM 
but can present variably in quality and quantity [31, 
46]. The absence of mitochondrial damage renders 
the diagnosis of IBM highly unlikely.

4.	 The extent of tissue damage increases over time as 
characterized by increased fibrous and fatty tissue in 
the endomysium. Together with marked variability of 
fiber size and the presence of necrotic fibers, a pleth-
ora of structural sarcoplasmic abnormalities such 
as targetoid defects and coarse sarcolemma appear-
ance on NADH-tetrazolium reductase stains gives a 
severe ‘myopathic-dystrophic’ appearance [8]. This 
pattern occurs variably across the course of disease 
[70].

In short, a distinct histological pattern defines IBM, 
with mitochondrial dysfunction and muscle infiltrates of 
an expanded, cytotoxic CD8+ T cell population as promi-
nent features.

Which types of immune association may 
characterize IBM?
The pathogenesis of IBM has given rise to much specula-
tion and, despite recent advances, remains largely enig-
matic. Thus, the immunopathological framework of IBM 
likely differs from other IIM presenting with an acute 
immune response. Still, understanding how IBM associ-
ates with other diseases might provide insight into shared 
immune mechanisms, potentially providing a new under-
standing of the pathogenesis of this unique disorder.

To discuss IBM and its association with other disor-
ders, it must first be clarified how pathologies might 
co-occur with IIM. First, some IIM exhibit organ 
involvement other than skeletal muscle as a defining 
feature. Most notably, these include DM and antisyn-
thetase syndrome myositis. Here, extramuscular 
involvement is a clinicopathological feature charac-
teristic of the underlying disease. A second group of 
poorly defined myositis commonly includes patients 
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with overlap forms of IIM, in which muscle inflamma-
tion co-occurs with disorders from the spectrum of 
rheumatological disease [4, 5]. While this group is often 
summarized as ‘overlap myositis’ (OM), a definition 
met by international consensus is lacking at presence. 

Lastly, typically muscle-restricted IIM, such as IBM, 
might develop in association with other diseases. These 
disease phenotypes often resemble their idiopathic 
form both clinically and histopathologically. IBM and 
IMNM are notable examples for IIM with a predomi-
nant and most often ‘pure’ muscle phenotype.

Fig. 1  Characteristic pathomorphology of IBM. Pathomorphological characteristics of IBM patients as seen on muscle biopsy. (a) Pronounced fiber 
size variation with hypotrophic and hypertrophic fibers as well as internalized nuclei, myofiber necrosis and endomysial lymphocytic infiltrates 
and rimmed vacuoles. Gömöri trichrome staining (× 200). (b) Pronounced fiber size variation with hypotrophic and hypertrophic fibers as well as 
internalized nuclei, myofiber necrosis, endomysial lymphocytic infiltrates and rimmed vacuoles. H&E staining (× 200). (c) Presence of COX-negative, 
SDH-positive myofibers. COX-SDH staining (× 200). (d) Myofibers display sarcolemmal (and sarcoplasmic) positivity for MCH class I. MHC class I 
staining (× 100). (e) Myofibers display sarcolemmal (and sarcoplasmic) positivity for MHC class II. MHC class II staining (× 100). (f) Coarse p62+ 
autophagic material mostly localized in vacuoles. p62 staining (× 200). COX  cytochrome oxidase immunohistochemistry; H&E  hematoxylin and 
eosin; IBM  inclusion body myositis; MHC  major histocompatibility complex; SDH  succinate dehydrogenase
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Polymyositis—an IIM entity at the crossroads
The discussion of IBM and associated pathologies is 
complicated by the IIM subgroup of polymyositis (PM). 
In contemporary approaches to classification of IIM, PM 
remains a poorly defined entity lacking distinct clinical 
and seropathological diagnostic criteria [50, 51]. A recent 
retrospective analysis applied the current diagnostic cri-
teria to a cohort of 37 patients previously diagnosed with 
PM. The diagnosis could be maintained in 9 patients 
(24.3%), while others were classified as other IIM entities 
based on serological and histopathological data. These 9 
PM patients accounted for 3.5% of the total cohort of 255 
IIM patients included in the analysis, indicating that PM 
might constitute a separate, but rare, subgroup of IIM 
[48]. Currently, PM remains a point of discussion with 
some authors arguing for a strict clinicopathological defi-
nition, while others advocate for a broader interpretation 
of PM, allowing for the inclusion of otherwise unclassifia-
ble cases [45]. Some authors also argue for PM belonging 
to the clinicopathological spectrum of IBM. This notion 
is exemplified by the concept of PM with mitochon-
drial pathology (PM-Mito) [4, 60]. The extent of rimmed 
vacuoles might vary among IBM specimens, with some 
authors defining patients, that might otherwise be clas-
sified as IBM, due to the absence of rimmed vacuoles as 
having PM-Mito [60, 77]. The available studies do not 
currently allow for a conclusive statement as to whether 
PM, PM-Mito and IBM are clearly distinct disease enti-
ties or whether they belong to a common spectrum of 
IIM.

IBM and the human immunodeficiency virus
The skeletal muscles can be subject to damage during all 
stages of infection with human immunodeficiency virus 
(HIV). Broadly, damage to skeletal muscle in association 
with HIV can be attributed to inflammatory mechanisms 
or toxicity of anti-retroviral therapy [42]. With respect 
to the former, the virus itself may provoke ephemeral 
myalgia during seroconversion, while a pro-inflamma-
tory state results from specific alterations of the immune 
architecture during the disease that may occur even 
despite clinically effective treatment. Toxic myopathies 
with the presence of characteristic mitochondrial damage 
may occur in response to nucleoside-analogue reverse 
transcriptase inhibitors (NRTI), such as azidothymidine 
[22, 43], which inhibits mitochondrial DNA polymer-
ase gamma [15]—a regular component of the combined 
antiretroviral therapy (cART) of the past. Mitochondrial 
damage has become uncommon as an adverse effect of 
HIV treatment. Nevertheless, it is interesting to note that 
mitochondrial damage exemplified by ragged red fibers 
and COX-negative fibers are a pathogenic hallmark of 
tissue damage in IBM [15]. In contrast, muscle damage 

in response to NRTIs is accompanied by subacute, pain-
ful myopathy and increased creatine kinase (CK) levels 
[22]. These clinical features are unusual for IBM. Simi-
larly, NRTI-associated myopathy presents with neither 
substantial muscle inflammation, positivity of MHC 
class I or II for myofibers, nor prototypical features of 
autophagy. Although NRTI-induced myopathy shares 
mitochondrial damage as a feature with IBM, it appears 
that the immune pathology of IBM is more complex, 
resulting in a distinct clinical phenotype.

In addition to toxicity, HIV-positive patients may 
develop a distinct inflammatory myopathy reminiscent 
of IBM. In a retrospective trial, 11 out of 1562 patients 
with IIM were positive for HIV [47]. It is curious to note 
that initially, these patients presented with a PM pheno-
type featuring high CK level and both proximal and distal 
muscle weakness. Eventually, these patients progressed 
to an IBM-like phenotype with distinct weakness of the 
finger flexors, knee extensors and ankle dorsiflexors [47]. 
Muscle biopsies were characterized by rimmed vacuoles 
and endomysial inflammation but lacked perifascicular 
atrophy (Fig.  2). Clinico-pathological progression from 
HIV-PM to HIV-IBM was emphasized by a consecutive 
study [33]. The sporadic occurrence of PM-Mito in the 
context of HIV infection was similarly described to pro-
gress to an IBM-like phenotype in a number of studies 
[70, 77]. Of note, only the age at manifestation was dif-
ferent between HIV-IBM (51  years) and sporadic IBM 
(69  years), while clinical and histopathological features 
were reported to be similar [33]. It is tempting to specu-
late that the change of the clinical phenotype from PM-
like to IBM-like is mirrored by chronic stimulation of 
the adaptive immune system, eventually resulting in an 
exhausted immune phenotype summarized as immune 
senescence [58]. The intriguing interplay between IBM 
and immune senescence will be discussed later in this 
review.

Early reports on muscle pathology in cohorts of HIV-
infected patients described tubuloreticular inclusions in 
endothelial capillary cells similar to those in DM—per-
haps reflecting early effects of interferon signaling on 
the endoplasmic reticulum—as a hallmark feature of 
HIV myopathy [43]. ‘HIV myopathy’ has been used as 
an umbrella term including both toxic (cART-related) 
and inflammatory myopathies in the context of HIV 
infection. In a follow up study on HIV myopathy, skel-
etal muscle biopsies from 46 HIV-positive patients were 
categorized into five subgroups according to European 
Neuromuscular Center (ENMC) criteria [42]. Here, IBM 
accounted for 3 patients, while 18 were classified as PM, 1 
as IMNM and 12 as non-specific myositis. In addition, 12 
patients displayed isolated mitochondrial abnormalities 
with COX-negative fibers and without rimmed vacuoles 
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or inflammation [42]. Of note, virus-specific antigens 
were not detected and only a minor subset of T cells were 
found to be clonally expanded [16]. In addition to inflam-
matory features, detection of protein aggregates, such as 
p62, LC3 or TDP-43, is also more frequent in HIV-IBM. 
While the morphology of HIV-IBM closely mimics IBM 
without associated HIV infection, therapeutic responses 

diverge between the two disorders, as HIV-IBM patients 
have been observed to sometimes benefit from immuno-
suppressant treatment [47]. Interestingly, a similar pat-
tern of disease is seen in patients infected with human 
T-lymphotropic virus-type I (HTLV-I) [54]. Although 
rare, HTLV-1 primarily infects T cells and is linked to the 
development of leukemia. In a study of 11 patients from 

Fig. 2  HIV-associated IBM. Pathomorphological characteristics of IBM associated with HIV as seen on muscle biopsy. (a) Myopathic picture with 
pronounced fiber size variation with hypotrophic and hypertrophic fibers and endomysial lymphocytic infiltrates. No overt rimmed vacuoles are 
seen. Gömöri trichrome staining (× 200). (b) In other ares of the same biopsy specimen, a milder myopathic picture is evident with only single 
lymphomonocytic cells in the endomysium. No overt rimmed vacuoles are seen. Gömöri trichrome staining (× 200). (c) Presence of COX-negative 
and SDH-positive myofibers. COX-SDH staining (× 200). (d) Myofibers display varying sarcolemmal (and sarcoplasmic) positivity for MCH class I. 
MHC class I staining (× 200). (e) Myofibers display varying sarcolemmal (and sarcoplasmic) positivity for MHC class II. MHC class II staining (× 200). (f) 
Single small fibres with initial coarse p62+ autophagic material mostly localized subsarcolemmaly and in perinuclear areas (× 600). COX  cytochrome 
oxidase immunohistochemistry; HIV  human immunodeficiency virus; IBM  inclusion body myositis; MHC  major histocompatibility complex; 
SDH  succinate dehydrogenase
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Japan, HTLV-1 infection associated with IBM demon-
strates a similar clinical phenotype and pathomorphol-
ogy to HIV-IBM.

Taken together, HIV-associated myopathy displays an 
intricate association to IBM. A clinical progression to an 
IBM-like phenotype in HIV-associated myopathy argues 
for a shared immunopathology.

Viral infections and IBM
IBM has not only been described in the context of HIV, 
although this is the most well-documented associ-
ated viral infection. IBM also occurs with other chronic 
viral diseases such as hepatitis C [30, 71, 72]. Again, 
it is unlikely to be the direct effect of the hepatitis 
virus resulting in the observed phenotype. Uruha et  al. 
describe a large proportion of patients with antibodies 
against the hepatitis C virus (HCV) (28%) in IBM as com-
pared to age-matched controls with IIM (4.5%) [72]. To 
contextualize these numbers, the prevalence is 3.4% in 
the general Japanese population aged 60 and older. The 
underlying immunological link between HCV and IBM 
has not yet been explored, with clinical progression and 
the extent of pathological features being similar between 
HCV-IBM and IBM [72]. The upregulation of interferon-
stimulated genes (ISG), resulting in elevated levels of 
circulating interferons, may contribute to extrahepatic 
manifestations of HCV infection, such as myopathy and 
cognitive deficits [38, 66]. It is interesting to note that, to 
our knowledge, associations between IBM and the hepa-
titis B virus (HBV) have not been described [55]. Simi-
lar to HIV, viral chronicity in HCV results in persistent 
immune stimulation and exhaustion [24, 49, 56]. Con-
sequently, the concept of immune senescence might be 
shared across conditions.

Sjögren syndrome and IBM
Sjögren syndrome (SjS) is characterized by chronic 
autoimmunity directed against exocrine glands, mainly 
the salivary and lacrimal glands. The clinical phenotype 
ranges from isolated sicca syndrome to a systemic disease 
with musculoskeletal pain and fatigue [9]. Interestingly, 
associations between IBM and SjS have been reported 
in the past. In a study from Greece, three (0.6%) out of 
518 patients with SjS were also diagnosed with IBM [37]. 
This data is contrasted by another study that observed 
only one IBM patient in a cohort of 1320 patients with 
SjS [14]. Interestingly, rheumatological comorbidities are 
frequent in IBM patients. In a study of 3160 patient with 
probable IBM in Norway, coexisting rheumatological dis-
ease was reported in 25% of cases with SjS accounting 
for 10% [19]. Moreover, anti–Sjögren-syndrome-related 
antigen A (SSA) autoantibodies were detected in 20% of 
IBM patients [19]. In a large retrospective study from the 

United States, SjS was reported in 6% of IBM patients 
rendering this group of IIM to be 6.2 times more likely to 
have SjS than population-based controls [55]. In contrast, 
lupus erythematosus, systemic scleroderma and rheu-
matoid arthritis were more frequent in IIM than in IBM 
[55]. At the pathomorphological level, IBM associated 
with SjS closely resembles ‘pure’ IBM with endomysial 
infiltration, muscle fibre size variation and COX-negative 
myofibers (Fig. 3).

There are three immunological links between SjS and 
IBM warranting investigation. First, both IBM and SjS 
are associated with HLA-DR3, a component gene-allele 
of the AH8.1 ancestral haplotype [57, 63]. HLA-DR3 is 
known to predispose to autoimmune disease. Indeed, 
in a study of 57 IBM patients from Australia, HLA-DR3 
carriers had lower quadriceps strength and a more rapid 
decline, suggesting that the HLA haplotype influences 
disease progression [57]. In a smaller study investigating 
the association of IBM and SjS, 6 patients with co-exist-
ing diseases were carriers of the HLA-DR3 haplotype 
[63]. Although limited to a small number of patients, 
these results argue for a common genetic predisposition 
linking IBM and SjS.

Further, both SjS [20, 21] and IBM [26, 28] are associ-
ated with T cell large granular lymphocytic leukaemia. 
Indeed, a recent study demonstrated that muscle inva-
sion by large granular lymphocytes was present in 15/15 
IBM patients but only in 1 out of 28 PM or DM patients, 
thus establishing clonal T cell expansion as a character-
istic hallmark of IBM. Interestingly, clonal expansion 
of T cells was also recently described in SjS, although 
more prominently featuring the CD4+ than the CD8+ 
T cell compartment [34, 36, 79]. As such, clonal expan-
sion of cytotoxic CD4+ T cells correlated with glandu-
lar dysfunction in SjS patients [36]. It may therefore be 
suggested that the immune architecture of IBM and SjS 
facilitates T cell failure resulting in expansion of a cyto-
toxic population, providing a potential link between 
these disorders.

Lastly, although highly specific for IBM, anti-cN-
1A-antibodies are also detected in ~ 12% of SjS (range: 
7–19%) and ~ 10% of lupus erythematosus (range: 
6–21%) [32, 62]. While the diagnostic usefulness of anti-
cN-1A-antibodies has been well investigated, the patho-
genic role of this antibody in IBM is yet to be elucidated. 
A recent study reported the first evidence that anti-cN-
1A-antibodies influence IBM pathomorphology, as these 
antibodies were associated with p62 aggregation and 
more pronounced macrophage infiltration in an in  vivo 
passive immunization model [69]. In contrast, it remains 
unknown if anti-cN-1A-antibodies contribute to the 
pathophysiology of SjS (or lupus erythematosus).
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Taken together, the association of IBM and SjS is 
characterized by distinct immune features, includ-
ing the HLA-DR3 haplotype, an association with T 
cell large granular lymphocytic leukaemia and the 

anti-cN-1A-antibody. The extent of these co-occurrences 
appears not to be shared by other rheumatological disor-
ders and argues for a specific link between the immuno-
pathology of IBM and SjS.

Fig. 3  Sjögren syndrome-associated IBM. Pathomorphological characteristics of IBM associated with Sjögren syndrome as seen on muscle biopsy. 
(a) Myopathic picture with pronounced fiber size variation with hypotrophic and hypertrophic fibers and a diffurse, dense endomysial lymphocytic 
infiltrates. Gömöri trichrome staining (× 200). (b) Pronounced fiber size variation with hypotrophic and hypertrophic fibers as well as internalized 
nuclei, myofiber necrosis and endomysial lymphocytic infiltrates and rimmed vacuoles. H&E staining (× 200). (c) Presence of COX-negative, 
SDH-positive myofibers. COX-SDH staining (× 200). (d) Myofibers display strong sarcolemmal (and sarcoplasmic) positivity for MCH class I. MHC 
class I staining (× 200). (e) Myofibers display sarcolemmal (and sarcoplasmic) positivity for MHC class II. MHC class II staining (× 200). (f) Coarse p62+ 
autophagic material mostly localized in vacuoles and subsarcolemmaly with some fibers showing more fine granular autophagic material (× 400). 
COX  cytochrome oxidase immunohistochemistry; H&E  hematoxylin and eosin; IBM  inclusion body myositis; MHC  major histocompatibility complex; 
SDH  succinate dehydrogenase
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Muscular sarcoidosis, granulomatous myositis 
and IBM
Sarcoidosis is characterized by noncaseating granulomas in 
affected organs [3]. Involvement of skeletal muscle is called 
muscular sarcoidosis or sarcoid myopathy [3, 11]. This 
manifestation infrequently accompanies sarcoidosis and 
presents with a highly variable clinical phenotype, rang-
ing from acute myositis (in younger patients) to a pseudo-
myopathic form (in older patients) [3]. The nomenclature 
of muscular sarcoidosis is complicated by granuloma-
tous myositis, a disease entity characterized by granulo-
mas in striated muscle that is most often associated with 
sarcoidosis, but not exclusively [61]. Here, we will use the 
latter term—granulomatous myositis—to describe muscle 
inflammation associated with the presence of noncaseat-
ing granulomas. The association between granulomatous 
myositis and IBM has been reported since 1986 [17] and 
was replicated in a panoply of studies, most recently in a 
cohort of 23 patients from France [18]. Regarding the mus-
cle biopsies, there is a striking co-occurrence of typical, 
noncaseating granuloma formation in perimysial and, to 
a lesser extent, endomysial areas, with characteristic IBM 
features (Fig. 4) [18, 44]. Among 2952 consecutive muscle 
biopsies, Vattami et al. identified 27 patients with IBM and 
6 with pulmonary sarcoidosis. Out of the 27 IBM patients, 
two had sarcoidosis and out of the 6 patients with pulmo-
nary sarcoidosis, two had IBM [73]. The frequency of the 
association between granulomatous myositis and IBM was 
corroborated in a study from Japan describing granuloma 
formation in 4 out of 15 IBM patients [65]. Recently, a 
study group from France provided an interesting approach 
by comparing a cohort of patients with granulomatous 
myositis to a control group of IIM and a group of IBM [18]. 
Here, almost half of patients diagnosed with granuloma-
tous myositis matched the diagnostic criteria of IBM [18]. 
These patients responded poorly to immunosuppressive 
treatment, similar to IBM [18]. The presence of congo-
philic inclusions and p62-positive deposits was associated 
with a treatment-refractory course of disease in granu-
lomatous myositis [1]. Further, patients with granuloma-
tous myositis that fulfilled diagnostic criteria for IBM had 
anti-cN-1A-antibodies in 43% of cases, a frequency compa-
rable to ‘pure’ IBM patients [18]. One difference between 
granulomatous myositis and IBM is frequent extramuscu-
lar involvement in the former condition. All patients with 
granulomatous myositis demonstrated involvement of 
joints, lung, kidneys or skin in the previously mentioned 
study [18]. To date, potentially owing to the rarity of the 
two disorders, the immunological link between granuloma-
tous myositis and IBM remains unclear. However, dissect-
ing the immune overlap might be of value towards better 
understanding both conditions and their intricate interplay 
(Fig. 4).

T cell exhaustion and immune senescence at center 
stage
Loss of physiological robustness is a hallmark of biologi-
cal aging. Almost every organ and system in the body is 
affected, including the immune system. Although lack-
ing a conclusive definition, the term immunosenescence 
is employed to summarize the age-dependent deteriora-
tion of the immune system [58, 80]. Immune senescence 
might serve as conceptual framework that explains the 
diminished responses to vaccines, frequent occurrence 
of cancer and chronic inflammatory disease, and vulner-
ability to infections that are observed in old age [58, 78, 
80]. The specific immune phenotype of certain immune 
cells is also altered during aging. As such, terminally dif-
ferentiated effector T cells may expand in aged individu-
als [41, 75, 80]. These cells are characterized by loss of 
CD27 (and CD28) and expression of CD57, low or absent 
proliferative capacities and secretion of proinflammatory 
cytokines such as IL-6 or TNFα [67].

Two independent datasets identified KLRG1 as a 
marker of highly differentiated cytotoxic T cells in skel-
etal muscle of IBM patients and demonstrated that 
these cells are absent in IIM, not including IBM [23, 
27]. This cell population demonstrates a cytotoxic sig-
nature (expression of various granzymes and perforins) 
and a highly differentiated T cell phenotype (KLRG1+, 
CD244+, T-bet+, CD57+/CD28−, CD62L−) [23, 27]. 
KLRG1 is an inhibitory receptor of the C-type lectin-
like family identified both on NK cells and T cells [68]. 
It is important to note that there are (at least) two dif-
ferent KLRG1+ T cell populations: (i) TEMRA cells 
being KLRG1+CD57+CD27−CD28−CCR7−CD12dim 
[27] and (ii) central memory T cells that are 
KLRG1+CD57−CD27+CD28+CCR7+CD127+ [35]. The 
presence of terminally differentiated CD8+ T cells has 
been demonstrated both in blood and muscle of IBM 
patients and was replicated across studies [23, 27]. This 
observation is important as it might provide an suitable 
explanation for the treatment-refractory nature of IBM, 
given that these terminally differentiated CD8+ T cells 
do not readily respond to contemporary immunosup-
pressants [25, 27]. Consequently, therapeutic approaches 
directed at these cells are currently being explored [53]. 
One aspect that might shape therapeutic strategies is 
the persistence of degenerative features even after the 
amelioration of inflammation. In one example, immu-
nodeficient mice were xenotransplanted with human 
IBM muscle and human T cells were cleared using an 
anti-CD3-antibody [10]. In this model, degenerative 
patterns as exemplified by rimmed vacuoles persisted 
despite normalization of MHC-1 expression after T cell 
depletion [10].
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T cells that are exposed to chronic stress (i.e. antigen 
exposure) might develop a specific, exhausted pheno-
type [76]. In this context, PD1 is of importance. PD1 
is an inhibitory receptor regulating T cell response to 
chronic stimulation including persistent inflamma-
tion but also cancer [40]. We and others have previ-
ously demonstrated that the PD1 signaling pathway 

might contribute to T cell exhaustion in IIM. T cells in 
IBM were PD1-positive and we observed a particular 
accumulation of senescent T cells in IBM muscle [40]. 
This effect was not unique to IBM, but also observed 
in IMNM and immune checkpoint inhibitor-related 
myositis.

Fig. 4  Granulomatous myositis overlapping with IBM. Pathomorphological characteristics of granulomatous myositis overlapping with IBM as 
seen on muscle biopsy. (a) Granulomatous inflammatory infiltrates with sparse giant cells and intermingled single myofibers. Gömori trichrome 
staining (× 200). (b) Severe fiber size variation with hypotrophic and hypertrophic fibers as well as multiple rimmed vacuoles. Gömori trichrome 
staining (× 400). (c) Presence of multiple COX-negative and SDH-positive myofibers. COX-SDH staining (× 200). (d) Myofibers display sarcolemmal 
(and sarcoplasmic) positivity for MHC class I. MHC class I staining (× 200). (e) Myofibers display sarcolemmal (and sarcoplasmic) positivity for MHC 
class II. MHC class II staining (× 200). (f) Coarse p62+ autophagic material mostly localized in vacuoles and subsarcolemmaly with some fibers 
showing more fine granular autophagic material (× 400). COX  cytochrome oxidase immunohistochemistry; IBM  inclusion body myositis; MHC  major 
histocompatibility complex; SDH  succinate dehydrogenase
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However, it is intriguing to note that cellular senes-
cence contextualized by chronic inflammation has been 
a recurring theme across IBM and its associated disor-
ders. More specifically, we observed that HIV promotes 
immune senescence and is intimately linked to IBM. 
HIV is known to induce chronic immune activation and 
hyperstimulation of T cells leading to premature immune 
senescence [7], thereby potentially shifting the age of 
onset to a younger age for IBM patients [49]. This fea-
ture, and its association to IBM is potentially shared by 
HCV, another chronic viral infection discussed to induce 
T cell exhaustion [49, 56]. This link has also been repli-
cated in SjS, with salivary gland progenitor cells dem-
onstrating features of senescence, as evidenced by p16 
expression [74]. These features correlated with immune 
cell infiltration and disease severity. We speculate that 
IBM and associated pathologies develop in a permissive 

environment that promotes early T cell exhaustion and 
senescence, which cumulates in the accrual of terminally 
differentiated cells mediating autoimmunity against skel-
etal muscle. T cell senescence is unable to explain the full 
extent of IBM pathophysiology, but it might provide a 
framework for the treatment-refractory course of disease 
and the characteristic expansion of terminally differenti-
ated, cytotoxic CD8+ T cells present in blood and muscle.

Outlook
Similar histopathological patterns are seen across a 
range of conditions, such as SjS, HIV-associated myosi-
tis and granulomatous myositis (Fig. 5). This association 
is contextualized by interesting commonalities between 
IBM and immune senescence and the likely pathologi-
cal expansion of terminally differentiated CD8+ T cells. 

Fig. 5  Associated inflammatory myopathies and immunopathologies in IBM. In the upper half, myopathies with associated features to IBM are 
displayed. Red boxes show shared disease features in the clinical phenotype. In the bottom half, immunopathologies with overlapping features are 
displayed
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Future studies aimed at understanding how IBM and 
associated conditions co-occur might shed light on the 
intricate pathophysiology of IBM. To dissect this inter-
play, research might focus on studying autoimmunity 
across IBM, HIV-IBM, SjS and granulomatous myosi-
tis to identify similarities and differences between these 
disorders.
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